程序员人生 网站导航

第16课:Spark Streaming源码解读之数据清理内幕彻底解密

栏目:服务器时间:2016-06-15 08:24:56

本篇博客的主要目的是:
1. 理清楚Spark Streaming中数据清算的流程

组织思路以下:
a) 背景
b) 如何研究Spark Streaming数据清算?
c) 源码解析

1:背景
Spark Streaming数据清算的工作不管是在实际开发中,还是自己动手实践中都是会面临的,Spark Streaming中Batch Durations中会不断的产生RDD,这样会不断的有内存对象生成,其中包括元数据和数据本身。由此Spark Streaming本身会有1套产生元数据和数据的清算机制。

2:如何研究Spark Streaming数据清算?

  1. 操作DStream的时候会产生元数据,所以要解决RDD的数据清算工作就1定要从DStream入手。由于DStream是RDD的模板,DStream之间有依赖关系。
    DStream的操作产生了RDD,接收数据也靠DStream,数据的输入,数据的计算,输出全部生命周期都是由DStream构建的。由此,DStream负责RDD的全部生命周期。因此研究的入口的是DStream。
  2. 基于Kafka数据来源,通过Direct的方式访问Kafka,DStream随着时间的进行,会不断的在自己的内存数据结构中保护1个HashMap,HashMap保护的就是时间窗口,和时间窗口下的RDD.依照Batch Duration来存储RDD和删除RDD.
  3. Spark Streaming本身是1直在运行的,在自己计算的时候会不断的产生RDD,例如每秒Batch Duration都会产生RDD,除此以外可能还有累加器,广播变量。由于不断的产生这些对象,因此Spark Streaming有自己的1套对象,元数据和数据的清算机制。
  4. Spark Streaming对RDD的管理就相当于JVM的GC.

3:源码解析
generatedRDDs:安照Batch Duration的方式来存储RDD和删除RDD。

// RDDs generated, marked as private[streaming] so that testsuites can access it @transient private[streaming] var generatedRDDs = new HashMap[Time, RDD[T]] ()

我们在实际开发中,可能手动缓存,即便不缓存的话,它在内存generatorRDD中也有对象,如何释放他们?不单单是RDD本身,也包括数据源(数据来源)和元数据(metada),因此释放RDD的时候这3方面都需要斟酌。
释放跟时钟Click有关系,由于数据是周期性产生,所以肯定是周期性释放。
因此下1步就需要找JobGenerator

  1. RecurringTimer: 消息循环器将消息不断的发送给EventLoop
private val timer = new RecurringTimer(clock, ssc.graph.batchDuration.milliseconds, longTime => eventLoop.post(GenerateJobs(new Time(longTime))), "JobGenerator")
2.  eventLoop:onReceive接收到消息。
/** Start generation of jobs */ def start(): Unit = synchronized { if (eventLoop != null) return // generator has already been started // Call checkpointWriter here to initialize it before eventLoop uses it to avoid a deadlock. // See SPARK-10125 checkpointWriter eventLoop = new EventLoop[JobGeneratorEvent]("JobGenerator") { override protected def onReceive(event: JobGeneratorEvent): Unit = processEvent(event) override protected def onError(e: Throwable): Unit = { jobScheduler.reportError("Error in job generator", e) } }
3.  processEvent:中就会接收到ClearMetadata和ClearCheckpointData。
/** Processes all events */ private def processEvent(event: JobGeneratorEvent) { logDebug("Got event " + event) event match { case GenerateJobs(time) => generateJobs(time) case ClearMetadata(time) => clearMetadata(time) case DoCheckpoint(time, clearCheckpointDataLater) => doCheckpoint(time, clearCheckpointDataLater) case ClearCheckpointData(time) => clearCheckpointData(time) } }
4.  clearMetadata:清楚元数据信息。
/** Clear DStream metadata for the given `time`. */ private def clearMetadata(time: Time) { ssc.graph.clearMetadata(time) // If checkpointing is enabled, then checkpoint, // else mark batch to be fully processed if (shouldCheckpoint) { eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = true)) } else { // If checkpointing is not enabled, then delete metadata information about // received blocks (block data not saved in any case). Otherwise, wait for // checkpointing of this batch to complete. val maxRememberDuration = graph.getMaxInputStreamRememberDuration() jobScheduler.receiverTracker.cleanupOldBlocksAndBatches(time - maxRememberDuration) jobScheduler.inputInfoTracker.cleanup(time - maxRememberDuration) markBatchFullyProcessed(time) } }
5.  DStreamGraph:首先会清算outputDStream,其实就是forEachDStream
def clearMetadata(time: Time) { logDebug("Clearing metadata for time " + time) this.synchronized { outputStreams.foreach(_.clearMetadata(time)) } logDebug("Cleared old metadata for time " + time) }
6.  DStream.clearMetadata:除清除RDD,也能够清除metadata元数据。如果想RDD跨Batch Duration的话可以设置rememberDuration时间. rememberDuration1般都是Batch Duration的倍数。
/** * Clear metadata that are older than `rememberDuration` of this DStream. * This is an internal method that should not be called directly. This default * implementation clears the old generated RDDs. Subclasses of DStream may override * this to clear their own metadata along with the generated RDDs. */ private[streaming] def clearMetadata(time: Time) { val unpersistData = ssc.conf.getBoolean("spark.streaming.unpersist", true) // rememberDuration记忆周期 查看下RDD是不是是oldRDD val oldRDDs = generatedRDDs.filter(_._1 <= (time - rememberDuration)) logDebug("Clearing references to old RDDs: [" + oldRDDs.map(x => s"${x._1} -> ${x._2.id}").mkString(", ") + "]") //从generatedRDDs中将key清算掉。 generatedRDDs --= oldRDDs.keys if (unpersistData) { logDebug("Unpersisting old RDDs: " + oldRDDs.values.map(_.id).mkString(", ")) oldRDDs.values.foreach { rdd => rdd.unpersist(false) // Explicitly remove blocks of BlockRDD rdd match { case b: BlockRDD[_] => logInfo("Removing blocks of RDD " + b + " of time " + time) b.removeBlocks() //清算掉RDD的数据 case _ => } } } logDebug("Cleared " + oldRDDs.size + " RDDs that were older than " + (time - rememberDuration) + ": " + oldRDDs.keys.mkString(", ")) //依赖的DStream也需要清算掉。 dependencies.foreach(_.clearMetadata(time)) }
7.  在BlockRDD中,BlockManagerMaster根据blockId将Block删除。删除Block的操作是不可逆的。
/** * Remove the data blocks that this BlockRDD is made from. NOTE: This is an * irreversible operation, as the data in the blocks cannot be recovered back * once removed. Use it with caution. */ private[spark] def removeBlocks() { blockIds.foreach { blockId => sparkContext.env.blockManager.master.removeBlock(blockId) } _isValid = false }

回到上面JobGenerator中的processEvent
1. clearCheckpoint:清除缓存数据。

/** Clear DStream checkpoint data for the given `time`. */ private def clearCheckpointData(time: Time) { ssc.graph.clearCheckpointData(time) // All the checkpoint information about which batches have been processed, etc have // been saved to checkpoints, so its safe to delete block metadata and data WAL files val maxRememberDuration = graph.getMaxInputStreamRememberDuration() jobScheduler.receiverTracker.cleanupOldBlocksAndBatches(time - maxRememberDuration) jobScheduler.inputInfoTracker.cleanup(time - maxRememberDuration) markBatchFullyProcessed(time) }
2.  clearCheckpointData:
def clearCheckpointData(time: Time) { logInfo("Clearing checkpoint data for time " + time) this.synchronized { outputStreams.foreach(_.clearCheckpointData(time)) } logInfo("Cleared checkpoint data for time " + time) }
3.  ClearCheckpointData: 和清除元数据信息1样,还是清除DStream依赖的缓存数据。
private[streaming] def clearCheckpointData(time: Time) { logDebug("Clearing checkpoint data") checkpointData.cleanup(time) dependencies.foreach(_.clearCheckpointData(time)) logDebug("Cleared checkpoint data") }
4.  DStreamCheckpointData:清除缓存的数据
/** * Cleanup old checkpoint data. This gets called after a checkpoint of `time` has been * written to the checkpoint directory. */ def cleanup(time: Time) { // Get the time of the oldest checkpointed RDD that was written as part of the // checkpoint of `time` timeToOldestCheckpointFileTime.remove(time) match { case Some(lastCheckpointFileTime) => // Find all the checkpointed RDDs (i.e. files) that are older than `lastCheckpointFileTime` // This is because checkpointed RDDs older than this are not going to be needed // even after master fails, as the checkpoint data of `time` does not refer to those files val filesToDelete = timeToCheckpointFile.filter(_._1 < lastCheckpointFileTime) logDebug("Files to delete:\n" + filesToDelete.mkString(",")) filesToDelete.foreach { case (time, file) => try { val path = new Path(file) if (fileSystem == null) { fileSystem = path.getFileSystem(dstream.ssc.sparkContext.hadoopConfiguration) } fileSystem.delete(path, true) timeToCheckpointFile -= time logInfo("Deleted checkpoint file '" + file + "' for time " + time) } catch { case e: Exception => logWarning("Error deleting old checkpoint file '" + file + "' for time " + time, e) fileSystem = null } } case None => logDebug("Nothing to delete") } }

至此我们也知道了清算的进程,全流程以下:
这里写图片描述

但是清算是甚么时候被触发的?
1. 在终究提交Job的时候,是交给JobHandler去履行的。

private class JobHandler(job: Job) extends Runnable with Logging { import JobScheduler._ def run() { try { val formattedTime = UIUtils.formatBatchTime( job.time.milliseconds, ssc.graph.batchDuration.milliseconds, showYYYYMMSS = false) val batchUrl = s"/streaming/batch/?id=${job.time.milliseconds}" val batchLinkText = s"[output operation ${job.outputOpId}, batch time ${formattedTime}]" ssc.sc.setJobDescription( s"""Streaming job from <a href="$batchUrl">$batchLinkText</a>""") ssc.sc.setLocalProperty(BATCH_TIME_PROPERTY_KEY, job.time.milliseconds.toString) ssc.sc.setLocalProperty(OUTPUT_OP_ID_PROPERTY_KEY, job.outputOpId.toString) // We need to assign `eventLoop` to a temp variable. Otherwise, because // `JobScheduler.stop(false)` may set `eventLoop` to null when this method is running, then // it's possible that when `post` is called, `eventLoop` happens to null. var _eventLoop = eventLoop if (_eventLoop != null) { _eventLoop.post(JobStarted(job, clock.getTimeMillis())) // Disable checks for existing output directories in jobs launched by the streaming // scheduler, since we may need to write output to an existing directory during checkpoint // recovery; see SPARK⑷835 for more details. PairRDDFunctions.disableOutputSpecValidation.withValue(true) { job.run() } _eventLoop = eventLoop if (_eventLoop != null) { //当Job完成的时候,eventLoop会发消息初始化onReceive _eventLoop.post(JobCompleted(job, clock.getTimeMillis())) } } else { // JobScheduler has been stopped. } } finally { ssc.sc.setLocalProperty(JobScheduler.BATCH_TIME_PROPERTY_KEY, null) ssc.sc.setLocalProperty(JobScheduler.OUTPUT_OP_ID_PROPERTY_KEY, null) } } } }
2.  OnReceive初始化接收到消息JobCompleted.
def start(): Unit = synchronized { if (eventLoop != null) return // scheduler has already been started logDebug("Starting JobScheduler") eventLoop = new EventLoop[JobSchedulerEvent]("JobScheduler") { override protected def onReceive(event: JobSchedulerEvent): Unit = processEvent(event) override protected def onError(e: Throwable): Unit = reportError("Error in job scheduler", e) } eventLoop.start()
3.  processEvent:
private def processEvent(event: JobSchedulerEvent) { try { event match { case JobStarted(job, startTime) => handleJobStart(job, startTime) case JobCompleted(job, completedTime) => handleJobCompletion(job, completedTime) case ErrorReported(m, e) => handleError(m, e) } } catch { case e: Throwable => reportError("Error in job scheduler", e) } }
4.  调用JobGenerator的onBatchCompletion方法清楚元数据。
private def handleJobCompletion(job: Job, completedTime: Long) { val jobSet = jobSets.get(job.time) jobSet.handleJobCompletion(job) job.setEndTime(completedTime) listenerBus.post(StreamingListenerOutputOperationCompleted(job.toOutputOperationInfo)) logInfo("Finished job " + job.id + " from job set of time " + jobSet.time) if (jobSet.hasCompleted) { jobSets.remove(jobSet.time) jobGenerator.onBatchCompletion(jobSet.time) logInfo("Total delay: %.3f s for time %s (execution: %.3f s)".format( jobSet.totalDelay / 1000.0, jobSet.time.toString, jobSet.processingDelay / 1000.0 )) listenerBus.post(StreamingListenerBatchCompleted(jobSet.toBatchInfo)) } job.result match { case Failure(e) => reportError("Error running job " + job, e) case _ => } }

触发流程以下:
这里写图片描述

本课程笔记来源于:
这里写图片描述

------分隔线----------------------------
------分隔线----------------------------

最新技术推荐