程序员人生 网站导航

HDU 5895 Mathematician QSC(逆元应用+矩阵快速幂+数论知识)——2016 ACM/ICPC Asia Regional Shenyang Online

栏目:php教程时间:2017-01-09 11:36:26

传送门

Mathematician QSC

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 208    Accepted Submission(s): 101


Problem Description
QSC dream of becoming a mathematician, he believes that everything in this world has a mathematical law.

Through unremitting efforts, one day he finally found the QSC sequence, it is a very magical sequence, can be calculated by a series of calculations to predict the results of a course of a semester of a student.

This sequence is such like that, first of all,f(0)=0,f(1)=1,f(n)=f(n2)+2f(n1)(n2)Then the definition of the QSC sequence is g(n)=ni=0f(i)2. If we know the birthday of the student is n, the year at the beginning of the semester is y, the course number x and the course total score s, then the forecast mark is xg(ny)%(s+1).
QSC sequence published caused a sensation, after a number of students to find out the results of the prediction is very accurate, the shortcoming is the complex calculation. As clever as you are, can you write a program to predict the mark?
 

Input
First line is an integer T(1≤T≤1000).

The next T lines were given n, y, x, s, respectively.

n、x is 8 bits decimal integer, for example, 00001234.

y is 4 bits decimal integer, for example, 1234.
n、x、y are not negetive.

1≤s≤100000000
 

Output
For each test case the output is only one integer number ans in a line.
 

Sample Input
2
20160830 2016 12345678 666
20101010 2014 03030303 333
 

Sample Output
1
317

题目大意:

首先定义了1个 f() 函数,f(n)=2f(n1)+f(n2),f(1)=1,f(0)=0, 然后又定义了1个 g() 函数 , g(n)=ni=0f(i)2,

最后让你求的是 xg(ny)%(s+1), 其中 x,y,n,s 都是输入的。

解题思路:
这个题目其实不是很难,仔细分析1下还是挺简单的,首先我们1看到这个 f() 函数的表达式,1定会联想到矩阵快速幂,那末我们首先将 f(n)

能够通过矩阵快速幂得到,具体怎样得到的呢,我现在来讲1下:

首先,我们设1个矩阵 A ,这就是那个转移的矩阵,也就是说需要构造1个矩阵 A 使得 (f(n2),f(n1))A=(f(n1),f(n)) 成立,那末现在 A

1定是1个 22 的矩阵,然后在根据 f(n) 的递推式得到 A 矩阵中的具体值,算出来是:
0112

然后再来分析我们要求的式子: xg(ny)%(s+1),如果满足 g(ny)Phi(s+1) 的时候我们可以将其转化为

xg(xy)%Phi(s+1)+Phi(s+1)%(s+1)(1) ,否则只能暴力计算,然后我们发现只有当 ny11 的时候才暴力计算也很简单了,直接求,

然后快速幂就ok了,关键是解决上面 (1) 式的那个问题,首先我们看1下 g(n) 能不能写成关于 f() 的比较简单的式子,然后我们将其展开发现

f(i)f(i+1) 有关系,那末 f(i)f(i+1) 等于甚么呢:

f

------分隔线----------------------------
------分隔线----------------------------

最新技术推荐