程序员人生 网站导航

如何绘制caffe网络训练曲线

栏目:php教程时间:2016-07-04 08:26:41


本系列文章由 @yhl_leo 出品,转载请注明出处。
文章链接: http://blog.csdn.net/yhl_leo/article/details/51774966


当我们设计好网络结构后,在神经网络训练的进程中,迭代输出的log信息中,1般包括,迭代次数,训练损失代价,测试损失代价,测试精度等。本文提供1段示例,简单讲述如何绘制训练曲线(training curve)。

首先看1段训练的log输出,网络结构参数的那段疏忽,直接跳到训练迭代阶段:

I0627 21:30:06.004370 15558 solver.cpp:242] Iteration 0, loss = 21.6953 I0627 21:30:06.004420 15558 solver.cpp:258] Train net output #0: loss = 21.6953 (* 1 = 21.6953 loss) I0627 21:30:06.004426 15558 solver.cpp:571] Iteration 0, lr = 0.01 I0627 21:30:28.592690 15558 solver.cpp:242] Iteration 100, loss = 13.6593 I0627 21:30:28.592730 15558 solver.cpp:258] Train net output #0: loss = 13.6593 (* 1 = 13.6593 loss) I0627 21:30:28.592733 15558 solver.cpp:571] Iteration 100, lr = 0.01 ... I0627 21:37:47.926597 15558 solver.cpp:346] Iteration 2000, Testing net (#0) I0627 21:37:48.588079 15558 blocking_queue.cpp:50] Data layer prefetch queue empty I0627 21:40:40.575474 15558 solver.cpp:414] Test net output #0: loss = 13.07728 (* 1 = 13.07728 loss) I0627 21:40:40.575477 15558 solver.cpp:414] Test net output #1: loss/top⑴ = 0.00226 I0627 21:40:40.575487 15558 solver.cpp:414] Test net output #2: loss/top⑸ = 0.01204 I0627 21:40:40.708261 15558 solver.cpp:242] Iteration 2000, loss = 13.1739 I0627 21:40:40.708302 15558 solver.cpp:258] Train net output #0: loss = 13.1739 (* 1 = 13.1739 loss) I0627 21:40:40.708307 15558 solver.cpp:571] Iteration 2000, lr = 0.01 ... I0628 01:28:47.426129 15558 solver.cpp:242] Iteration 49900, loss = 0.960628 I0628 01:28:47.426177 15558 solver.cpp:258] Train net output #0: loss = 0.960628 (* 1 = 0.960628 loss) I0628 01:28:47.426182 15558 solver.cpp:571] Iteration 49900, lr = 0.01 I0628 01:29:10.084050 15558 solver.cpp:449] Snapshotting to binary proto file train_net/net_iter_50000.caffemodel I0628 01:29:10.563587 15558 solver.cpp:734] Snapshotting solver state to binary proto filetrain_net/net_iter_50000.solverstate I0628 01:29:10.692239 15558 solver.cpp:346] Iteration 50000, Testing net (#0) I0628 01:29:13.192075 15558 blocking_queue.cpp:50] Data layer prefetch queue empty I0628 01:31:00.595120 15558 solver.cpp:414] Test net output #0: loss = 0.6404232 (* 1 = 0.6404232 loss) I0628 01:31:00.595124 15558 solver.cpp:414] Test net output #1: loss/top⑴ = 0.953861 I0628 01:31:00.595127 15558 solver.cpp:414] Test net output #2: loss/top⑸ = 0.998659 I0628 01:31:00.727577 15558 solver.cpp:242] Iteration 50000, loss = 0.680951 I0628 01:31:00.727618 15558 solver.cpp:258] Train net output #0: loss = 0.680951 (* 1 = 0.680951 loss) I0628 01:31:00.727623 15558 solver.cpp:571] Iteration 50000, lr = 0.0096

这是1个普通的网络训练输出,含有1个loss,可以看出solver.prototxt的部份参数为:

test_interval: 2000 base_lr: 0.01 lr_policy: "step" # or "multistep" gamma: 0.96 display: 100 stepsize: 50000 # if is "multistep", the first stepvalue is set as 50000 snapshot_prefix: "train_net/net"

固然,上面的分析,即使不理睬,对下面的代码也没甚么影响,绘制训练曲线本质就是文件操作,从上面的log文件中,我们可以看出:

  • 对每一个出现字段] Iterationloss =的文本行,含有训练的迭代次数和损失代价;
  • 对每一个含有字段] IterationTesting net (#0)的文本行,含有测试的对应的训练迭代次数;
  • 对每一个含有字段#2:loss/top⑸的文本行,含有测试top⑸的精度。

根据这些分析,就能够对文本进行以下处理:

import os import sys import numpy as np import matplotlib.pyplot as plt import math import re import pylab from pylab import figure, show, legend from mpl_toolkits.axes_grid1 import host_subplot # read the log file fp = open('log.txt', 'r') train_iterations = [] train_loss = [] test_iterations = [] test_accuracy = [] for ln in fp: # get train_iterations and train_loss if '] Iteration ' in ln and 'loss = ' in ln: arr = re.findall(r'ion \b\d+\b,',ln) train_iterations.append(int(arr[0].strip(',')[4:])) train_loss.append(float(ln.strip().split(' = ')[-1])) # get test_iteraitions if '] Iteration' in ln and 'Testing net (#0)' in ln: arr = re.findall(r'ion \b\d+\b,',ln) test_iterations.append(int(arr[0].strip(',')[4:])) # get test_accuracy if '#2:' in ln and 'loss/top⑸' in ln: test_accuracy.append(float(ln.strip().split(' = ')[-1])) fp.close() host = host_subplot(111) plt.subplots_adjust(right=0.8) # ajust the right boundary of the plot window par1 = host.twinx() # set labels host.set_xlabel("iterations") host.set_ylabel("log loss") par1.set_ylabel("validation accuracy") # plot curves p1, = host.plot(train_iterations, train_loss, label="training log loss") p2, = par1.plot(test_iterations, test_accuracy, label="validation accuracy") # set location of the legend, # 1->rightup corner, 2->leftup corner, 3->leftdown corner # 4->rightdown corner, 5->rightmid ... host.legend(loc=5) # set label color host.axis["left"].label.set_color(p1.get_color()) par1.axis["right"].label.set_color(p2.get_color()) # set the range of x axis of host and y axis of par1 host.set_xlim([-1500, 160000]) par1.set_ylim([0., 1.05]) plt.draw() plt.show()

示例代码中,添加了简单的注释,如果网络训练的log输出与本中所列出的不同,只需要稍微修改其中的1些参数设置,就可以绘制出训练曲线图。

最后附上绘制出的训练曲线图:

train_curve

------分隔线----------------------------
------分隔线----------------------------

最新技术推荐