程序员人生 网站导航

身份证号码图像提取--基于canny边缘检测的连通域检测算法

栏目:php教程时间:2016-06-13 11:46:19

在之前扫描2维码提取任务以后,工作中又需要将身份证图象中的身份证号码提取出来,然后给同事调用进行辨认。之前的连通域检测算法比较“蛮力”,由于它1旦检测出1个大的区域,那末这区域中的所有内部区域都将不复存在了。所以在连通域检测时,需要第1步去掉周围可能存在的白边,否则就会失败。后来笔者换了1个思路,如果检测1个区域时保存对应生成该区域的点,该区域不符合要求的话就将这些点擦掉,从而就不会影响到内部的区域了。因而就有了1下算法的诞生:

(1)从左上角开始,从碰到的第1个白点开始探测最大的连通域,获得离该点小于max_dis的所有点,放到1个list中。

(2)然后遍历该列表,并将离每个点距离小于max_dis的点都放到该list中。

(3)遍历结束后,计算包括list中所有点的最小rect区域。

(4)根据设定的目标区域特点,如长宽、长宽比等,来判断该区域是不是满足要求,如果满足,则放到rectlist中。然后将该list中的所有点都置黑。转到(1)履行。

(5)如果rectlist为空,则没有获得到目标rect。如果>=1 则将之依照1个规则进行排序(应当是那个最主要的特点),然后输出最可能的那个rect。

算法进程演示以下:

原图:

色采过滤(为了得到效果好1点的canny图):

canny图:

检测画框与擦除:

第1次 画框:

第1次擦除:

第2次画框:

第2次擦除

n次画框:

n次擦除:

最后的甚么都没剩下:

得出结果:

详细算法代码以下:

FindIdCode.h


#include "opencv2/core/core.hpp" #include "opencv2/imgproc/imgproc_c.h" #include "opencv2/imgproc/imgproc.hpp" #include "opencv2/highgui/highgui.hpp" #include <iostream> #include < io.h> #include <algorithm> #include <stdio.h> #include "opencv/cv.h" #include "opencv/cxcore.h" #include "opencv2/highgui/highgui_c.h" #include "direct.h" using namespace cv; using namespace std; class CGetIDCOde { public: CGetIDCOde(); //删除文件 并返回string 值 string getFilePath( const char * szBuf); //获得文件长度 long GetFileLength(const char * filepath); //过滤色彩 void FilterColor(string strImgFileName); //找到目标连通域 RECT FindTargetConnectedDomain(); //将list中的点都设置成某1个色彩 void SetPointListColor(Mat & srcImg, std::vector<cv::Point> pointList, int nColor); //根据点列表获得最小包括区域 void GetRectFromPointList(std::vector<cv::Point>& pointList, RECT & rtRect); //获得与该点邻近的点 void GetNearPoint(Mat & srcImg,cv::Point currentPoint, std::vector<cv::Point> & pointList); //将1个box框画成某1个色彩 void DrowBoxColor(Mat &srcImg, std::vector<RECT> &boxList, int nColor); //获得1个联通区域 BOOL GetOneConnectedDomain(Mat & srcImg, std::vector<cv::Point>& pointList, RECT &rect); //将图象的某1个区域保存为图象 void SavePicWithDestRect(string strSource, string strDest, RECT destRect); //获得身份证号图象区域 RECT GetIdCode(const char * szSourceFile); //边沿检测 int outLinePic2(); char szCurrentPath[MAX_PATH]; string strOrigin; string strSave1; string strSave1_1; string strSave2; string strSave3; string strSave4; string strSave5; string strSave3_0; string strSave3_1; string strSave3_2; string strSave3_3; string strSave6; string strSave7; string strSave8; };

FindIdCode.cpp

#include "FindIdCode.h" int mMAX_DIS = 0; double fScale = 0.0; #define BOX_WIDTH 50 #define BLACK 0 #define MID_BLACK_WHITE 128 #define WHITE 255 #define RATE 0.2 //依照框的宽度排序 BOOL SortByM5(RECT &v1, RECT &v2) { int nWidth1 = v1.right - v1.left; int nHeight1 = v1.bottom - v1.top; int nWidth2 = v2.right - v2.left; int nHeight2 = v2.bottom - v2.top; float fRate1 = 1.0 * nWidth1 / nHeight1; float fRate2 = 1.0 * nWidth2 / nHeight2; if (fRate1 > fRate2) { return TRUE; } else { return FALSE; } } string CGetIDCOde::getFilePath( const char * szBuf) { string str; str = szCurrentPath; str += "\\"; str += szBuf; //删除已存在的文件 DeleteFile(str.c_str()); return str; } long CGetIDCOde::GetFileLength(const char * filepath) { FILE* file = fopen(filepath, "rb"); if (file) { long size = filelength(fileno(file)); return size; } else { return 0; } } //色彩过滤 void CGetIDCOde::FilterColor(string strImgFileName) { uchar uDifferMax = 80; uchar rMax = 100; uchar bMax = 150; uchar gMax = 150; uchar uWhite = 255; uchar r,b,g; IplImage *workImg = cvLoadImage(strImgFileName.c_str(), CV_LOAD_IMAGE_UNCHANGED); //像素太高的进行缩放 if (workImg->width > 900) { int nTargetWidth = 600; fScale = 1.0 * workImg->width / nTargetWidth; CvSize czSize; //计算目标图象大小 czSize.width = nTargetWidth; czSize.height = workImg->height / fScale; //IplImage *pSrcImage = cvLoadImage(strSave2.c_str(), CV_LOAD_IMAGE_UNCHANGED); IplImage *pDstImage = cvCreateImage(czSize, workImg->depth, workImg->nChannels); cvResize(workImg, pDstImage, CV_INTER_AREA); cvReleaseImage(&workImg); cvSaveImage(strSave1_1.c_str(),pDstImage); workImg = pDstImage; } for(int x=0;x<workImg->height;x++) { for(int y=0;y<workImg->width;y++) { b=((uchar*)(workImg->imageData+x*workImg->widthStep))[y*3+0]; g=((uchar*)(workImg->imageData+x*workImg->widthStep))[y*3+1]; r=((uchar*)(workImg->imageData+x*workImg->widthStep))[y*3+2]; //偏色比较严重的 //uchar uMax = max(max(b,g),r); //uchar uMin = min(min(b,g),r); //if ( uMax - uMin > uDifferMax) int nAbove = 0; if (b >= uDifferMax) { nAbove ++; } if (g >= uDifferMax) { nAbove ++; } if (r >= uDifferMax) { nAbove ++; } //有两个大于80 if(nAbove >= 2 || b > bMax || g > gMax || r > rMax) { ((uchar*)(workImg->imageData+x*workImg->widthStep))[y*3+0] = uWhite; ((uchar*)(workImg->imageData+x*workImg->widthStep))[y*3+1] = uWhite; ((uchar*)(workImg->imageData+x*workImg->widthStep))[y*3+2] = uWhite; } } } cvSaveImage(strSave1.c_str(), workImg); } int CGetIDCOde::outLinePic2() { Mat src = imread(strSave1.c_str()); Mat dst; if (!src.empty()) { //输入图象 //输出图象 //输入图象色彩通道数 //x方向阶数 //y方向阶数 Sobel(src,dst,src.depth(),1,1); //imwrite("sobel.jpg",dst); //输入图象 //输出图象 //输入图象色彩通道数 Laplacian(src,dst,src.depth()); imwrite("laplacian.jpg",dst); //输入图象 //输出图象 //彩色转灰度 cvtColor(src,src,CV_BGR2GRAY); //canny只处理灰度图 //输入图象 //输出图象 //低阈值 //高阈值,opencv建议是低阈值的3倍 //内部sobel滤波器大小 //threshold1和threshold2 当中的小阈值用来控制边沿连接,大的阈值用来控制强边沿的初始分割。50 150 Canny(src,dst,220,240,3); imwrite(strSave2.c_str(),dst); return 0; } else { cout<< "IMG is not exist!"; return ⑴; } } void CGetIDCOde::SetPointListColor(Mat & srcImg, std::vector<cv::Point> pointList, int nColor) { for (int i = 0; i < pointList.size(); i ++) { int x = pointList[i].x; int y = pointList[i].y; *(srcImg.data + srcImg.step[0] * y + srcImg.step[1] * x) = nColor; } } RECT CGetIDCOde::FindTargetConnectedDomain() { Mat srcImg = imread(strSave2.c_str(), CV_LOAD_IMAGE_GRAYSCALE); //设定最大的距离 mMAX_DIS = srcImg.cols * (1.0 * 9 / 400) + 1; int nMaxWidth = 0.6 * srcImg.cols; int nMaxHeight = 1.0 * 5 * srcImg.rows / 36 ; std::vector<cv::Point> pointList; //探测1个矩形连通域,判断是不是符合目标特点,不符合删除找下1个。 //找到1个放入vector中。 std::vector<RECT> targetRectList; while(TRUE) { RECT rect; GetOneConnectedDomain(srcImg, pointList,rect); //判断该rect是不是符合要求。 int nWidth = rect.right - rect.left; int nHeight = rect.bottom - rect.top; // 300 20 float fRate = 1.0 * nWidth / nHeight; if (nHeight > 5 && nHeight < nMaxHeight && nWidth > 100 && nWidth < nMaxWidth && fRate > 8 && fRate < 20) { //SavePicWithDestRect(strOrigin, strSave8, rect); targetRectList.push_back(rect); //break; } else { if (pointList.empty()) { break; } } //置黑然后找下1个 SetPointListColor(srcImg, pointList, BLACK); imwrite(strSave3_3.c_str(),srcImg); pointList.clear(); } //有多个排序 if (targetRectList.size() > 0) { sort(targetRectList.begin(), targetRectList.end(), SortByM5); //找到 提取图象 保存。 RECT rect = targetRectList[0]; rect.left -= mMAX_DIS; if (rect.left < 0) { rect.left = 0; } rect.top -= mMAX_DIS; if (rect.top < 0) { rect.top = 0; } rect.right += mMAX_DIS; if (rect.right > srcImg.cols) { rect.right = srcImg.cols; } rect.bottom += mMAX_DIS; if (rect.bottom > srcImg.rows) { rect.bottom = srcImg.rows; } if (fScale > 0.0) { rect.left *= fScale; rect.right*= fScale; rect.bottom *= fScale; rect.top *= fScale; } return rect; //SavePicWithDestRect(strOrigin, strSave8, rect); } else { //cout<< "find no numbers!"; //getchar(); RECT rect; rect.bottom = rect.top = rect.left = rect.right = 0; return rect; } } //保存图象 void CGetIDCOde::SavePicWithDestRect(string strSource, string strDest, RECT destRect) { IplImage* src; IplImage* dst; src = cvLoadImage(strSource.c_str(),1); if(!src) { return ; } cvSetImageROI(src,cvRect(destRect.left,destRect.top ,destRect.right - destRect.left, destRect.bottom - destRect.top)); dst = cvCreateImage(cvSize(destRect.right - destRect.left, destRect.bottom - destRect.top), IPL_DEPTH_8U, src->nChannels); cvCopy(src,dst,0); cvResetImageROI(src); cvSaveImage(strDest.c_str(), dst); cvReleaseImage(&dst); cvReleaseImage(&src); } BOOL CGetIDCOde::GetOneConnectedDomain(Mat & srcImg, std::vector<cv::Point>& pointList, RECT &rect) { int nWidth = srcImg.cols; int nHeight = srcImg.rows; int nXStart = 0; int nYStart = 0; BOOL bBlack = TRUE; BOOL bBreak = FALSE; int nWhite = 0; //找到第1个最上角的白点 for (int y = 0; y < nHeight; y ++) { for (int x = 0; x < nWidth; x++) { int nPixel = (int)(*(srcImg.data + srcImg.step[0] * y + srcImg.step[1] * x)); if (nPixel > MID_BLACK_WHITE) { nXStart = x; nYStart = y; cv::Point tempPint(nXStart,nYStart); pointList.push_back(tempPint); bBreak = TRUE; break; } } if (bBreak) { break; } } int nSize = pointList.size(); //探测下1个点。 for (int i = 0; i < nSize; i ++) { cv::Point currentPoint = pointList[i]; GetNearPoint(srcImg, currentPoint, pointList); nSize = pointList.size(); //如果超过4000个点则删除后重新再来 if (nSize > 3000) { break; } } //对该pointList求最小包括的矩形框。 GetRectFromPointList(pointList, rect); std::vector<RECT> tempTect; tempTect.push_back(rect); DrowBoxColor(srcImg,tempTect, WHITE); imwrite(strSave3_2.c_str(),srcImg); DrowBoxColor(srcImg,tempTect, BLACK); return TRUE; } void CGetIDCOde::GetRectFromPointList(std::vector<cv::Point>& pointList, RECT & rtRect) { int nLeft = 0; int nTop = 0; int nRight = 0; int nBottom = 0; for(int i = 0; i < pointList.size(); i ++) { cv::Point tempPoint = pointList[i]; if (i == 0) { nLeft = nRight = tempPoint.x; nTop = nBottom = tempPoint.y; } else { if (tempPoint.x < nLeft) { nLeft = tempPoint.x; } if (tempPoint.x > nRight) { nRight = tempPoint.x; } if (tempPoint.y < nTop) { nTop = tempPoint.y; } if (tempPoint.y > nBottom) { nBottom = tempPoint.y; } } } rtRect.left = nLeft; rtRect.top = nTop; rtRect.right = nRight; rtRect.bottom = nBottom; } void CGetIDCOde::GetNearPoint(Mat & srcImg,cv::Point currentPoint, std::vector<cv::Point> & pointList) { //探测以该点为中心的 20 * 20范围的点。 for (int y = max(0, currentPoint.y - mMAX_DIS); y < min(srcImg.rows, currentPoint.y + mMAX_DIS); y ++) { for (int x = max(currentPoint.x - mMAX_DIS, 0); x < min(srcImg.cols, currentPoint.x + mMAX_DIS); x ++) { int nPixel = (int)(*(srcImg.data + srcImg.step[0] * y + srcImg.step[1] * x)); if (nPixel > MID_BLACK_WHITE) { cv::Point tempPint(x, y); //看该点是不是已放入list std::vector<cv::Point>::iterator itFind = find( pointList.begin(), pointList.end(),tempPint); if (itFind == pointList.end()) { pointList.push_back(tempPint); } } } } } //画框线为1个色彩 void CGetIDCOde::DrowBoxColor(Mat &srcImg, std::vector<RECT> &boxList, int nColor) { int nResultSize = boxList.size(); for (int i = 0; i < nResultSize; i ++) { RECT tempRect = boxList[i]; //上下边线 int y1 = tempRect.top; int y2 = tempRect.bottom; for (int x = tempRect.left; x <= tempRect.right; x ++) { *(srcImg.data + srcImg.step[1] * x + srcImg.step[0] * y1) = nColor; *(srcImg.data + srcImg.step[1] * x + srcImg.step[0] * y2) = nColor; } //左右侧线 int x1 = tempRect.left; int x2 = tempRect.right; for (int y = tempRect.top; y <= tempRect.bottom; y ++) { *(srcImg.data + srcImg.step[1] * x1 + srcImg.step[0] * y) = nColor; *(srcImg.data + srcImg.step[1] * x2 + srcImg.step[0] * y) = nColor; } } } RECT CGetIDCOde::GetIdCode(const char * szSourceFile) { CopyFile(szSourceFile, strOrigin.c_str(), FALSE); //文件大小 太小则不进行图象过滤 RECT rect; rect.bottom = rect.top = rect.left = rect.right = 0; long nFileLen = GetFileLength(strOrigin.c_str()); if (nFileLen == 0) { return rect; } else if (nFileLen > 7000 ) { FilterColor(strOrigin); } else { CopyFile(strOrigin.c_str(), strSave1.c_str(),FALSE ); } if (outLinePic2() == ⑴) { return rect; } return FindTargetConnectedDomain(); } CGetIDCOde::CGetIDCOde() { _getcwd(szCurrentPath,MAX_PATH); strOrigin = getFilePath("imageText.jpg"); strSave1 = getFilePath("imageText_D.jpg"); strSave1_1 = getFilePath("imageText_ReSize.jpg"); strSave2 = getFilePath("canny.jpg"); strSave3 = getFilePath("imageText_Clear0.jpg"); strSave4 = getFilePath("imageText_Clear1.jpg"); strSave5 = getFilePath("imageText_Clear2.jpg"); strSave3_0 = getFilePath("imageText_Clear3_0.jpg"); strSave3_1 = getFilePath("imageText_Clear3_1.jpg"); strSave3_2 = getFilePath("imageText_Clear3_2.jpg"); strSave3_3 = getFilePath("imageText_Clear3_3.jpg"); strSave6 = getFilePath("imageText_Clear3.jpg"); strSave7 = getFilePath("imageText_D.jpg"); strSave8 = getFilePath("imageText_Clear4.jpg"); }

类的测试代码:

#include "../FindIdCode/FindIdCode.h" using namespace std; #ifdef _DEBUG #pragma comment(lib, "Debug/FindIdCode.lib") #else #pragma comment(lib, "Release/FindIdCode.lib") #endif int main(int argc, char **argv) { if(argc < 2) return(1); CGetIDCOde getIdcode; //char* szSourceFile = "D:\\scan\\00000000000000000\\3032_024.jpg"; //dll测试 char* szSourceFile = argv[1]; RECT rect = getIdcode.GetIdCode(szSourceFile); //CopyFile(szSourceFile,strOrigin.c_str(), FALSE); getIdcode.SavePicWithDestRect(szSourceFile, getIdcode.strSave8, rect); cout<<"the rect is "<<rect.left<<" "<<rect.top<<" "<<rect.bottom<<" "<<rect.right<<" "; return 0; }


说明:

由于不断的进行循环检测,如果像素太高图片太大则耗时较多,而且边沿检测效果特别不好,所以程序中对像素宽度大于900的则缩放到400。

程序运行效果的好坏直接影响因数是 canny图片的效果。所以对不同特点的图片,可以调剂canny函数的参数,如本例中采取的参数是:Canny(src,dst,220,240,3)。

色采过滤:由于身份证有很多蓝色和红色的底纹,将rgb过大的色采变成了白色。有时候其实不1定会有好的效果,反而会让边沿增多,反而影响结果。另外如果图象特别模糊,最好也不要进行色采过滤。

最后还是需要提示1下opencv的环境问题。

------分隔线----------------------------
------分隔线----------------------------

最新技术推荐