Pseudoforest
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1932 Accepted Submission(s): 746
Problem Description
In graph theory, a pseudoforest is an undirected graph in which every connected component has at most one cycle. The maximal pseudoforests of G are the pseudoforest subgraphs of G that are not contained within any larger pseudoforest
of G. A pesudoforest is larger than another if and only if the total value of the edges is greater than another one’s.
Input
The input consists of multiple test cases. The first line of each test case contains two integers, n(0 < n <= 10000), m(0 <= m <= 100000), which are the number of the vertexes and the number of the edges. The next m lines, each line
consists of three integers, u, v, c, which means there is an edge with value c (0 < c <= 10000) between u and v. You can assume that there are no loop and no multiple edges.
The last test case is followed by a line containing two zeros, which means the end of the input.
Output
Output the sum of the value of the edges of the maximum pesudoforest.
Sample Input
3 3
0 1 1
1 2 1
2 0 1
4 5
0 1 1
1 2 1
2 3 1
3 0 1
0 2 2
0 0
Sample Output
Source
“光庭杯”第5届华中北区程序设计约请赛
暨 WHU第8届程序设计比赛
Recommend
lcy | We have carefully selected several similar problems for you: 3362 3368 3365 3369 3366
题意:求出1个最大的子图(子图的每一个连通份量最多有1个环)
用kruskal算法求出最大生成树 不过要判断是不是有环 2树合并时 :若2个子树都有环不能合并 只有1个有环可以合并 但合并后的树有环 若2个子树都没环直接合并
ac代码
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
int pre[10010],vis[10010];
struct s
{
int u,v,w;
}edge[100100];
int n,m;
int cmp(const void *a,const void *b)
{
return (*(struct s *)b).w-(*(struct s *)a).w;
}
void init()
{
int i;
for(i=0;i<=n;i++)
pre[i]=i;
}
int find(int x)
{
if(x==pre[x])
return x;
return pre[x]=find(pre[x]);
}
int merge(int u,int v)
{
int fu=find(u);
int fv=find(v);
if(fu==fv)
{
if(!vis[fu])
{
vis[fu]=1;
return 1;
}
return 0;
}
if(vis[fu]&&vis[fv])
return 0;
if(vis[fu])
pre[fv]=fu;
else
pre[fu]=fv;
return 1;
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF,n||m)
{
int i;
init();
for(i=0;i<m;i++)
{
int u,v,w;
scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].w);
}
qsort(edge,m,sizeof(edge[0]),cmp);
int ans=0;
memset(vis,0,sizeof(vis));
for(i=0;i<m;i++)
{
int u=edge[i].u;
int v=edge[i].v;
int w=edge[i].w;
if(merge(u,v))
ans+=w;
}
printf("%d
",ans);
}
}