程序员人生 网站导航

hdu - 4888 - Redraw Beautiful Drawings(最大流)

栏目:互联网时间:2014-11-07 08:56:27

题意:给1个N行M列的数字矩阵的行和和列和,每一个元素的大小不超过K,问这样的矩阵是不是存在,是不是唯1,唯1则求出各个元素N(1 ≤ N ≤ 400) , M(1 ≤ M ≤ 400), K(1 ≤ K ≤ 40)。

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4888

――>>建图:

1)超级源S = 0,超级汇T = N + M + 1;

2)S到每一个行和各连1条边,容量为该行行和;

3)每一个行和到每一个列和各连1条边,容量为K;

4)每一个列和到 T 各连1条边,容量为该列列和。

1个行到所有列连边,为的是让该行分流多少给各个列,正是该行某列元素的大小。。

所以,如果 S 到 T 的最大流 == 所有元素的和,则说明有解。。

残量网络中的行列结点之间如果有长度 > 2 的环(自环长度为2,但没法调剂流量),则说明这个环中的流量可以调剂,使得到达最大流时该环上的流量不唯1,即矩阵不唯1。。

#include <cstdio> #include <cstring> #include <queue> #include <algorithm> using std::min; using std::queue; const int MAXN = 400 * 2 + 10; const int MAXM = 400 * 400 + 2 * MAXN; const int INF = 0x3f3f3f3f; struct EDGE { int to; int cap; int flow; int nxt; } edge[MAXM << 1]; int N, M, K; int sum; int S, T; int hed[MAXN], ecnt; int cur[MAXN], h[MAXN]; bool impossible, bUnique; void Init() { impossible = false; bUnique = true; ecnt = 0; memset(hed, ⑴, sizeof(hed)); } void AddEdge(int u, int v, int cap) { edge[ecnt].to = v; edge[ecnt].cap = cap; edge[ecnt].flow = 0; edge[ecnt].nxt = hed[u]; hed[u] = ecnt++; edge[ecnt].to = u; edge[ecnt].cap = 0; edge[ecnt].flow = 0; edge[ecnt].nxt = hed[v]; hed[v] = ecnt++; } bool Bfs() { memset(h, ⑴, sizeof(h)); queue<int> qu; qu.push(S); h[S] = 0; while (!qu.empty()) { int u = qu.front(); qu.pop(); for (int e = hed[u]; e != ⑴; e = edge[e].nxt) { int v = edge[e].to; if (h[v] == ⑴ && edge[e].cap > edge[e].flow) { h[v] = h[u] + 1; qu.push(v); } } } return h[T] != ⑴; } int Dfs(int u, int cap) { if (u == T || cap == 0) return cap; int flow = 0, subFlow; for (int e = cur[u]; e != ⑴; e = edge[e].nxt) { cur[u] = e; int v = edge[e].to; if (h[v] == h[u] + 1 && (subFlow = Dfs(v, min(cap, edge[e].cap - edge[e].flow))) > 0) { flow += subFlow; edge[e].flow += subFlow; edge[e ^ 1].flow -= subFlow; cap -= subFlow; if (cap == 0) break; } } return flow; } int Dinic() { int maxFlow = 0; while (Bfs()) { memcpy(cur, hed, sizeof(hed)); maxFlow += Dfs(S, INF); } return maxFlow; } void Read() { int r, c; int rsum = 0, csum = 0; S = 0; T = N + M + 1; for (int i = 1; i <= N; ++i) { scanf("%d", &r); rsum += r; AddEdge(S, i, r); } for (int i = 1; i <= M; ++i) { scanf("%d", &c); csum += c; AddEdge(i + N, T, c); } if (rsum != csum) { impossible = true; return; } sum = rsum; for (int i = 1; i <= N; ++i) { for (int j = M; j >= 1; --j) { AddEdge(i, j + N, K); } } } void CheckPossible() { if (impossible) return; if (Dinic() != sum) { impossible = true; } } bool vis[MAXN]; bool CheckCircle(int x, int f) { vis[x] = true; for (int e = hed[x]; e != ⑴; e = edge[e].nxt) { if (edge[e].cap > edge[e].flow) { int v = edge[e].to; if (v == f) continue; if (vis[v]) return true; else { if (CheckCircle(v, x)) return true; } } } vis[x] = false; return false; } void CheckUnique() { if (impossible) return; memset(vis, 0, sizeof(vis)); for (int i = 1; i <= N; ++i) { if (CheckCircle(i, ⑴)) { bUnique = false; return; } } } void Output() { if (impossible) { puts("Impossible"); } else if (!bUnique) { puts("Not Unique"); } else { puts("Unique"); for (int i = 1; i <= N; ++i) { for (int e = hed[i], j = 1; e != ⑴ && j <= M; e = edge[e].nxt, ++j) { printf("%d", edge[e].flow); if (j < M) { printf(" "); } } puts(""); } } } int main() { while (scanf("%d%d%d", &N, &M, &K) == 3) { Init(); Read(); CheckPossible(); CheckUnique(); Output(); } return 0; }


------分隔线----------------------------
------分隔线----------------------------

最新技术推荐