程序员人生 网站导航

hdu - 4979 - A simple math problem.(可重复覆盖DLX + 打表)

栏目:互联网时间:2014-11-03 08:18:24

题意:1种彩票共有 N 个号码,每注包括 M 个号码,如果开出来的 M 个号码中与自己买的注有 R 个以上的相同号码,则中2等奖,问要保证中2等奖最少要买多少注(1<=R<=M<=N<=8)。

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4979

――>>覆盖问题,yy可知是可重复覆盖问题,因而,DLX 上场。。

      N个 选 R 个,共有 C[N][R] 种选法,每种选法需要被覆盖,对应于 DLX 中的列。。

      N个 选 M 个,共有 C[N][M] 种选法,每种选法对应于 DLX 中的行。。

      8 x 8 x 8 的大小,还可以打个表。。我的机子上打此表用时870s,约15分钟。。

      所以。。不打表,测试数据又严谨的话,准过不了。。曾我想在比赛时开1个终端让程序打表比较长的时间,今天遇到了。。得意

核心:

#include <cstdio> #include <cstring> const int MAXN = 8; const int MAXR = 1000; const int MAXC = 1000; const int MAXNODE = MAXR * MAXC; const int INF = 0x3f3f3f3f; int stateInCol[MAXC], ccnt; int rcnt; int bitcnt[1 << MAXN]; int C[MAXN + 1][MAXN + 1]; struct DLX { int sz; int H[MAXR], S[MAXC]; int row[MAXNODE], col[MAXNODE]; int U[MAXNODE], D[MAXNODE], L[MAXNODE], R[MAXNODE]; int Min; void Init(int n) { for (int i = 0; i <= n; ++i) { U[i] = D[i] = i; L[i] = i - 1; R[i] = i + 1; } L[0] = n; R[n] = 0; sz = n + 1; memset(S, 0, sizeof(S)); memset(H, ⑴, sizeof(H)); } void Link(const int& r, const int& c) { row[sz] = r; col[sz] = c; D[sz] = D[c]; U[D[c]] = sz; D[c] = sz; U[sz] = c; if (H[r] == ⑴) { H[r] = L[sz] = R[sz] = sz; } else { R[sz] = R[H[r]]; L[R[H[r]]] = sz; R[H[r]] = sz; L[sz] = H[r]; } S[c]++; sz++; } void Remove(const int& c) { for (int i = D[c]; i != c; i = D[i]) { L[R[i]] = L[i]; R[L[i]] = R[i]; } } void Restore(const int& c) { for (int i = U[c]; i != c; i = U[i]) { L[R[i]] = i; R[L[i]] = i; } } int A() { int ret = 0; bool vis[MAXC]; memset(vis, 0, sizeof(vis)); for (int i = R[0]; i != 0; i = R[i]) { if (!vis[i]) { vis[i] = true; ++ret; for (int j = D[i]; j != i; j = D[j]) { for (int k = R[j]; k != j; k = R[k]) { vis[col[k]] = true; } } } } return ret; } void Dfs(int cur) { if (cur + A() >= Min) return; if (R[0] == 0) { if (cur < Min) { Min = cur; } return; } int c = R[0]; for (int i = R[0]; i != 0; i = R[i]) { if (S[i] < S[c]) { c = i; } } for (int i = D[c]; i != c; i = D[i]) { Remove(i); for (int j = R[i]; j != i; j = R[j]) { Remove(j); } Dfs(cur + 1); for (int j = L[i]; j != i; j = L[j]) { Restore(j); } Restore(i); } } int Solve() { Min = INF; Dfs(0); return Min; } } dlx; int Bitcnt(int x) { int ret = 0; while (x) { ret += (x & 1); x >>= 1; } return ret; } void GetBitcnt() { for (int i = 0; i < (1 << MAXN); ++i) { bitcnt[i] = Bitcnt(i); } } void GetC() { for (int i = 1; i <= MAXN; ++i) { C[i][0] = C[i][i] = 1; for (int j = 1; j < i; ++j) { C[i][j] = C[i - 1][j] + C[i - 1][j - 1]; } } } void Init() { GetBitcnt(); GetC(); } void Solve(int N, int M, int R) { ccnt = 0; for (int i = 1; i < (1 << N); ++i) { if (bitcnt[i] == R) { stateInCol[i] = ++ccnt; } } dlx.Init(C[N][R]); rcnt = 0; for (int i = 1; i < (1 << N); ++i) { if (bitcnt[i] == M) { ++rcnt; for (int j = i; j > 0; j = (i & (j - 1))) { if (bitcnt[j] == R) { dlx.Link(rcnt, stateInCol[j]); } } } } printf("%d", dlx.Solve()); } void SaveTable() { puts("{"); for (int N = 1; N <= MAXN; ++N) { puts(" {"); for (int M = 1; M <= N; ++M) { printf(" {"); for (int R = 1; R <= M; ++R) { if (R > 1) { printf(", "); } Solve(N, M, R); } printf("}"); if (M == N) { puts(""); } else { puts(","); } } printf(" }"); if (N == MAXN) { puts(""); } else { puts(","); } } puts("}"); } int main() { freopen("table.txt", "w", stdout); Init(); SaveTable(); return 0; }

AC代码:

#include <cstdio> const int MAXN = 8; int ret[MAXN][MAXN][MAXN] = { { {1} }, { {2}, {1, 1} }, { {3}, {2, 3}, {1, 1, 1} }, { {4}, {2, 6}, {2, 3, 4}, {1, 1, 1, 1} }, { {5}, {3, 10}, {2, 4, 10}, {2, 3, 4, 5}, {1, 1, 1, 1, 1} }, { {6}, {3, 15}, {2, 6, 20}, {2, 3, 6, 15}, {2, 3, 4, 5, 6}, {1, 1, 1, 1, 1, 1} }, { {7}, {4, 21}, {3, 7, 35}, {2, 5, 12, 35}, {2, 3, 5, 9, 21}, {2, 3, 4, 5, 6, 7}, {1, 1, 1, 1, 1, 1, 1} }, { {8}, {4, 28}, {3, 11, 56}, {2, 6, 14, 70}, {2, 4, 8, 20, 56}, {2, 3, 4, 7, 12, 28}, {2, 3, 4, 5, 6, 7, 8}, {1, 1, 1, 1, 1, 1, 1, 1} } }; int main() { int T, N, M, R, kase = 0; scanf("%d", &T); while (T--) { scanf("%d%d%d", &N, &M, &R); printf("Case #%d: %d ", ++kase, ret[N - 1][M - 1][R - 1]); } return 0; }


------分隔线----------------------------
------分隔线----------------------------

最新技术推荐