题目:有一个数字让你猜,你有k次机会,并且有k个保险如果猜的低了会高度你低了,
高了会告诉你高了,并且失去一k保险(k=0时猜高了就会失败),现在问你能猜的数字范围。
分析:dp,二维动态规划。按保险k和猜的机会n递增的方向dp。
状态:f(G,L)为有G次猜的机会,L个保险时确定的数字范围(1~N);
转移方程:F(G,L)= G(G-1,L)+ 1 + F(G-1,L-1){ 猜低 + 猜中 + 猜高 };
边界条件:如果没有失败机会的话,只能从1开始向后猜;
说明:(2011-10-03 16:32)。
#include <iostream>
#include <cstdlib>
using namespace std;
long long F[ 31 ][ 31 ];
int main()
{
for ( long long i = 0 ; i <= 30 ; ++ i )
F[ i ][ 0 ] = i;
for ( int i = 0 ; i <= 30 ; ++ i )
F[ 0 ][ i ] = 0L;
for ( int i = 1 ; i <= 30 ; ++ i )
for ( int j = 1 ; j <= 30 ; ++ j )
F[ i ][ j ] = F[ i-1 ][ j ]+F[ i-1 ][ j-1 ]+1;
int G,L,C = 1;
while ( cin >> G >> L && ( G || L ) )
cout << "Case " << C++ << ": " << F[ G ][ L ] << endl;
return 0;
}