程序员人生 网站导航

MapReduce 编程 系列三 Reduce阶段实现

栏目:互联网时间:2014-10-02 08:00:01

Reduce代码就是做加和统计,

package org.freebird.reducer; import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.mapreduce.Reducer.Context; import org.apache.hadoop.mapreduce.Reducer; public class LogReducer<Key> extends Reducer<Key, IntWritable, Key,IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Key key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } }

这里框架保证在调用reduce方法之前,相同的key的value已经被放在values中,从而组成一个pair <key, values>,这些pair之间也已经用key做了排序。

参考文档:https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/mapreduce/Reducer.html

迭代遍历values,取出所有的value,都是1, 简单加和。

然后结果写入到context中。 注意,这里的context是Reducer包的Context。

最后,写一个Job类,将初始环境设置好。

package org.freebird; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.fs.Path; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.mapreduce.Job; public class LogJob { public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "sum_did_from_log_file"); job.setJarByClass(LogJob.class); job.setMapperClass(org.freebird.mapper.LogMapper.class); job.setCombinerClass(org.freebird.reducer.LogReducer.class); job.setReducerClass(org.freebird.reducer.LogReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } }



------分隔线----------------------------
------分隔线----------------------------

最新技术推荐