程序员人生 网站导航

hdu 5047 Sawtooth

栏目:互联网时间:2014-09-29 21:26:28

Sawtooth

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 258    Accepted Submission(s): 78


Problem Description
Think about a plane:

● One straight line can divide a plane into two regions.
● Two lines can divide a plane into at most four regions.
● Three lines can divide a plane into at most seven regions.
● And so on...

Now we have some figure constructed with two parallel rays in the same direction, joined by two straight segments. It looks like a character “M”. You are given N such “M”s. What is the maximum number of regions that these “M”s can divide a plane ?

 

Input
The first line of the input is T (1 ≤ T ≤ 100000), which stands for the number of test cases you need to solve.

Each case contains one single non-negative integer, indicating number of “M”s. (0 ≤ N ≤ 1012)
 

Output
For each test case, print a line “Case #t: ”(without quotes, t means the index of the test case) at the beginning. Then an integer that is the maximum number of regions N the “M” figures can divide.
 

Sample Input
2 1 2
 

Sample Output
Case #1: 2 Case #2: 19
 

Source
2014 ACM/ICPC Asia Regional Shanghai Online
 


题解及代码:

         推导公式很简单:首先通过看图,我们可以知道,任意两个M都能相交出现16个交点,然后对M进行标号1--n,总的交点数就是∑16*i  (1=<i<n),

然后根据:边数+点数+1=分成的区域数,可以算出公式是:8*n^2-7*n+1。因为数比较大,所以会想到用java,结果kuangbin大神卡的很紧Orz....

         那就用c++的大数模版来吧,通过观察我们发现:上述公式可以转换一下成n*(8*n-7)+1,这里8*n可以用位运算来算,我们让m=8*n-7,m最大也到

不了10^13,而n最大是10^12,这样我们可以利用大数的思想,将m分成两部分,分别与n进行相乘,最后简单处理一下输出就行了。


Time:187ms

#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long ll; const ll mod=1000000; int main() { ll n,m,l_m,r_m; int cas; scanf("%d",&cas); for(int ca=1; ca<=cas; ca++) { scanf("%I64d",&n); //printf("%I64d ",8*n*n-7*n+1); m=(n<<3)-7; l_m=m/mod; r_m=m%mod; l_m*=n; r_m=r_m*n+1; l_m=l_m+r_m/mod; r_m%=mod; printf("Case #%d: ",ca); if(l_m) printf("%I64d%06I64d ",l_m,r_m); else printf("%I64d ",r_m); } return 0; }


         





------分隔线----------------------------
------分隔线----------------------------

最新技术推荐